Lexicographic Breadth First Search for Chordal Graphs
نویسنده
چکیده
Applied to a chordal graph, lexicographic breadth rst search computes a perfect elimination scheme. We present a short elegant proof for this fact using only a new property of separators in chordal graphs.
منابع مشابه
Graph Searching & Perfect Graphs ∗
Perfect graphs, by definition, have a nice structure, that graph searching seems to extract in a, often non-inexpensive, manner. We scratch the surface of this elegant research area by giving two examples: Lexicographic Breadth Search on Chordal Graphs, and Lexicographic Depth First Search on Cocomparability graphs.
متن کاملChordal Graphs and Their Clique Graphs
In the rst part of this paper, a new structure for chordal graph is introduced, namely the clique graph. This structure is shown to be optimal with regard to the set of clique trees. The greedy aspect of the recognition algorithms of chordal graphs is studied. A new greedy algorithm that generalizes both Maximal cardinality Search (MCS) and Lexicographic Breadth rst search is presented. The tra...
متن کاملLexicographic Breadth First Search - A Survey
Lexicographic Breadth First Search, introduced by Rose, Tarjan and Lueker for the recognition of chordal graphs is currently the most popular graph algorithmic search paradigm, with applications in recognition of restricted graph families, diameter approximation for restricted families and determining a dominating pair in an AT-free graph. This paper surveys this area and provides new direction...
متن کاملMaximal Neighborhood Search and Rigid Interval Graphs
A rigid interval graph is an interval graph which has only one clique tree. In 2009, Panda and Das show that all connected unit interval graphs are rigid interval graphs. Generalizing the two classic graph search algorithms, Lexicographic Breadth-First Search (LBFS) and Maximum Cardinality Search (MCS), Corneil and Krueger propose in 2008 the so-called Maximal Neighborhood Search (MNS) and show...
متن کاملLaminar Structure of Ptolemaic Graphs and Its Applications
Ptolemaic graphs are graphs that satisfy the Ptolemaic inequality for any four vertices. The graph class coincides with the intersection of chordal graphs and distance hereditary graphs, and it is a natural generalization of block graphs (and hence trees). In this paper, a new characterization of ptolemaic graphs is presented. It is a laminar structure of cliques, and leads us to a canonical tr...
متن کامل